
Design of a generic machine-readable validation

report structure

Mark van der Loo and Olav ten Bosch
Statistics Netherlands

Version 1.0.0 August 15, 2017



Colofon
Version 1.0.0 August 15, 2017
Deliverable of Tasks 14/2 and 15/2 of the ESSnet Validat Integration (https://goo.gl/hEGdbo)
European Union Grant agreement N◦ 11103.2016.01-2016.739
Typeset with LATEX

https://ec.europa.eu/eurostat/cros/content/essnet-validat-integration_en


CONTENTS

Contents

1 Introduction 3

2 Requirements for a validation report 4

3 Evaluation events 7

4 Identifying validation results 8

5 Aggregation 11

5.1 Aggregation graphs . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Identifying aggregates . . . . . . . . . . . . . . . . . . . . . . . 14

6 Validation reports 15

6.1 Logical validation report structure . . . . . . . . . . . . . . . . 16

6.1.1 Identification of an expression evaluation event. . . . . . 17

6.1.2 Identification of an expression . . . . . . . . . . . . . . . 18

6.1.3 Identification of data . . . . . . . . . . . . . . . . . . . 18

6.1.4 Result values . . . . . . . . . . . . . . . . . . . . . . . 20

7 Technical standards 21

7.1 Object model . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Examples 26

Acknowledgements 31

References 32

Version 1.0.0 August 15, 2017 2



1 INTRODUCTION

1 Introduction

Data validation is at the core of every production chain in official statistics.
Whether it is the input received from a survey, a bunch of data records trans-
ferred from an administrative source or the result from some internet scraping,
data must be checked against our expectations in order to process it and turn
it into reliable statistics. For a more detailed explanation of data validation in
general and the principles we identified in validation, we refer to the handbook
of data validation from the ESSnet Foundation, by Di Zio et al. (2015) and
the validation principles written down by the ESS validation task force, see ESS
(2017, Chapter 4).

Standardisation is important in official statistics and this also applies to vali-
dation processes. Especially in the case of cross-organisation validation, where
both a data producer and a data receiver check the same data against some
commonly agreed validation rules, standardisation is crucial to prevent different
interpretations of the results. The more harmonised validation reports are, the
better the understanding across organisations is. This has been recognized by
the ESSnet on Validation project (Validat Integration). A Work Package (WP2)
was defined to attack this issue. This report is one of the deliverables of Work
Package 2. It contains the result of the work carried out by various project part-
ners and focusses on the standardisation of the output of a validation process:
the validation report.

Obviously we are interested in the question what information can and should be
included in a validation report and the optimal way to express this information.
In this document we develop a generic structure for expressing validation results.
We have the ambition to develop a validation report structure that can be used
in any validation task in any organisation in any statistical domain, for validation
of microdata as well as aggregated data. To make it applicable in machine to
machine communication contexts as well as in human contexts we design a
machine-readable as well as a human readable format. This report focusses on
the machine-readable version.

The approach we have taken is a combination of a top-down approach and a
bottom-up approach. In the bottom-up approach a number of example vali-
dation reports from member states and Eurostat were collected and studied to
identify common elements. This resulted in a long-list of validation report ele-
ments categorized into several classes such as rule metadata, process metadata,
aggregates etc. This led to some thinking about the basic concepts that are used
in validation reports across the ESS. We used the results from the bottom-up
approach to develop a more formal top-down approach expressed in this report.
Step by step we built a validation report structure that is generic enough to
be used in a wide range of validation contexts in many institutes, expressive

Version 1.0.0 August 15, 2017 3



2 REQUIREMENTS FOR A VALIDATION REPORT

Figure 1: Information elements involved in creating a validation result, relevant
for validation reports.

enough to support the most recognized validation report elements recognized
from the bottom-up approach and flexible enough to be adopted in a regional
validation context while containing the standardized elements from the generic
format. Validation tools or other statistical tools producing validation reports
as a side product should be able to use this structure for their validation output.

In this deliverable we address the following aspects: In Chapter 2 we ask our-
selves what we should expect from a generic validation report. After some
elaboration on the variety in richness of a validation report, we define a number
of generic demands. In Chapter 3 the idea of validation events and aggregation
events will be explained. Chapter 4 explains how to identify validation results
and other core elements to be used in the definition of the validation report
structure. In Chapter 5 we dive deeper into the modeling of aggregates to be
contained in a validation report. In Chapter 6 we formally define the generic
validation report structure that can carry both basic and aggregated results.
Chapter 7 describes the technical implementation of the concepts developed in
the earlier Chapters.

2 Requirements for a validation report

Figure 1 gives a high-level overview of a data validation procedure. At the input
side, we find the data to be validated and the validation rules that the data are
supposed to satisfy. At some point in time, the data are confronted with the
rules and validation results are created.

The purpose of a validation report is to convey validation results and information
on the validation procedure. The procedure as a whole generates and processes
a lot of information that can possibly be included in such a report. For example,
the validation rules may be endowed with metadata such as descriptions and

Version 1.0.0 August 15, 2017 4



2 REQUIREMENTS FOR A VALIDATION REPORT

Figure 2: Possible content of validation reports on a conceptual scale of ’rich-
ness’.

severity level and for the validation procedure it may be interesting to record a
timestamp and the used software.

A relevant question to ask is therefore what information should be included in
a validation report. Conceptually we can explore the extreme possibilities on
a scale such as depicted in Figure 2. On the left, we find a minimal report
containing a single result only: True, meaning that all data passed all rules, or
False, meaning that not all data passed all rules. On the right extreme, the
report conveys all data and metadata associated with the validated data, the
validation rules, the validation procedure and the results.

Before moving to a formal discussion of the information items involved with
data validation, it is useful to discuss a number of demands on a validation
report that will serve all uses and users. First of all, we take as a given that a
result that cannot be identified with the data and rules it pertains to is useless.
If the reports are to be used for communication across organizations, or if they
are to interpreted separately from the process that triggered the validation, the
relation with the rules and data needs to be included. In fact, this can also be
seen as a direct consequence of the validation principle Well-documented and
appropriately communicated validation errors (ESS, 2017). This leads us to the
following demand.

Demand 1 (Identification). A validation report shall convey validation results
such that they can be identified with the validation procedure, the validation
rules used, and the validated data.

A validation procedure usually involves multiple rules and each rule may concern
different subsets of variables, records or reference datasets. Every confrontation
of a rule with the data can be seen as a validation (sub)procedure yielding a
validation report. To gather all results, validation reports should be able to be
combined to an overall report.

Demand 2 (Closure under combination). Two validation reports shall be com-
binable in such a way that the result is again a validation report that includes
all information that separate reports contained.

Version 1.0.0 August 15, 2017 5



2 REQUIREMENTS FOR A VALIDATION REPORT

This includes cases where multiple procedures are involved, possibly related to
varying datasets, rule sets and actors involved in the validation procedures.

Finally, depending on intended use, one may be interested in the details of each
step in each validation procedure, or in a more aggregated view of one or more
validation events. Indeed, a quick view on some example validation reports from
multiple NSI’s and multiple statistical domains shows that most of them contain
some kind of aggregated results within the validation report itself. Therefore,
we also demand the following.

Demand 3 (Closure under aggregation). A validation report can be aggregated
such that the result is again a validation report.

Here, many types of aggregation may be relevant, including counting the (rela-
tive) number of passes and fails, finding the procedure that yielded the maximum
number of fails (or passes), and so on.

Both the second and third demand mention the term closure which may not
be a familiar term to all readers. The term ‘closure’ or ‘algebraic closure’ refers
to the property of a set being invariant under certain operations. For example,
because the sum of any two natural numbers is again a natural number, we
can say that the natural numbers are closed under addition of two numbers.
For our purposes it is important that the result of combining or aggregating
a validation report is also a validation report, meaning that it has exactly the
same structure (but possibly different content) before or after aggregation. If
this is not the case, we run the risk of defining new data structures for each
aggregate or combination of reports.

Upon closer examination the creation of aggregate results closely parallels the
creation of validation results. From an abstract point of view both types of
results are created by an event where an expression is evaluated after substituting
its variables with values coming from a given dataset. Their explicit differences
derive from their use in the context of validation reports: validation results are
created by confronting statistical data with validation rules while aggregation
results are created by evaluating an aggregation function using a set of validation
results.

In the following section the idea of expression evaluation will be discussed in
a little more detail. Next, the metadata elements will be specified towards
validation and aggregation.

Version 1.0.0 August 15, 2017 6



3 EVALUATION EVENTS

data

expression

evaluation result

Figure 3: Concepts involved in evaluating a (validating or aggregating) expres-
sion.

3 Evaluation events

Figure 3 depicts the concepts involved in creating a result by evaluating a val-
idating or aggregating expression. Conceptually, the data consists of values
bound to variable names. The expression denotes, using a fixed set of syntax
rules, a computation on variables present in the data. In the evaluation event,
the following activities take place

1. Read the expression and check whether it is valid syntax. If not: stop
execution.

2. Parse the expression: substitute variable names with the corresponding
values stored in data.

3. Evaluate the expression, creating the result.

In actual implementations these processes can be optimized. For example when
the same expression is evaluated with multiple data sets, the first step needs to
be executed only once. As a demonstration that both validation and aggregation
fit in this description, consider the following two examples.

Example 1. Consider the expression

age >= 0

and a data record given by

Name Age Sex

Joe 17 male

In the first step, the evaluator reads in the expression and approves it after
checking with the syntax. In the second step, the variable names are identified
and replaced with matching values from the dataset. This yields 17 >= 0.

Version 1.0.0 August 15, 2017 7



4 IDENTIFYING VALIDATION RESULTS

Finally, in the third step the proposition 17 >= 0 is evaluated and the result
returned.

Example 2. Consider the following table of validation results (we use 1 for
True and 0 for False).

Name validation result

Alice 1
Bob 1
Carol 0

The expression counting the number of passes is given by

sum(validation result).

In the first step the evaluator reads in the expression and approves it after check-
ing with the syntax. In the second step, the variable names are identified and
the expression is expanded1 to 1 + 1 + 0. This expression is then evaluated
and its result returned.

Obviously, to interpret a result, both the input data and the expression used
must be known. However, the value of the final result may also depend on
the (version of) the evaluator. Especially since the Handbook on Validation
explicitly includes the possibility of validation being done by expert review. In
that case, the ‘expression’ may be a manual or handbook with recommendations
on evaluating a certain dataset and the result is a validity assessment by an
expert. But even in the case of formalized expressions, interpreters may differ.
Formal programming syntax standards often leave certain details to interpreter
developers. This inevitably leads to platform-dependent results.

It is therefore proposed here to include metadata elements that identify data,
expression, and the evaluating event for all results reported in a validation report,
whether they are aggregates or validation results. Since validation results have
a particular type and meaning that differs from aggregation results it will be
useful to differentiate their metadata as well.

4 Identifying validation results

To get an idea of the (meta)data necessary to identify a validation result, con-
sider the data, validation rules and validation results shown in Table 1. When a
dataset is confronted with a validation rule, there are three possible outcomes.

Version 1.0.0 August 15, 2017 8



4 IDENTIFYING VALIDATION RESULTS

Table 1: Example data, validation rules, and results for six validation events.

Variables Rules

Nr Age hasjob Age >= 0

IF Age < 15 THEN

hasjob == ‘no’

1 36 yes 1 1
2 53 NA 1 NA

3 11 yes 1 0

A rule can be satisfied, yielding 1, a rule can be failed, yielding 0, or a rule
cannot be evaluated because of missing data, yielding NA.

In the example three records on age and work status are checked against two
rules: age must be larger than or equal to zero, and persons under 15 years old
cannot have a job. In each case the demand on age can be checked and each
record passes this test, yielding 1 (True) as validation result. For the second
rule, the first record passes the check since age equals 36 and the person has
a job which is allowed by the rule. In the second case the job status is not
available (NA). Hence the rule cannot be checked and the returned value is NA
as well. Finally, in the third record there is an 11-year old with a job which is a
combination that is not allowed by the rule, yielding 0 (False).

The above discussion leads to the following definition of a validation result

Definition 1 (Validation result). A validation result is a value from the set
{0, 1, NA}.

Validation results are obtained as outcomes of evaluating a validation rule on a
data set. We also follow the common convention which identifies 0 with False

and 1 with True. The numeric representation will make it easier to define
aggregators in later chapters.

A recurring point of discussion is whether NA should be an allowed validation
result. The main other options are to either interrupt execution, or to interpret
the result as failed when one of the data points necessary for evaluating a rule is
missing. Because statistical data often suffers from missing data the first option
would yield many interruptions of a statistical process flow. The only way to
prevent that would be to make sure that each rule guards against it explicitly by
building in clauses that detect missing values. The second option (NA implies
False) would yield a loss of information. More importantly, it assumes (possibly
unwarranted) that the user of the result follows this interpretation.

We deem both alternatives undesirable and therefore follow the definition above,
which also agrees with the definition of a formal data validation function in

1Conceptually of course. In practice accumulation will be more efficient.

Version 1.0.0 August 15, 2017 9



4 IDENTIFYING VALIDATION RESULTS

the Methodology on Validation handbook published by the Validat Foundation
ESSnet (Di Zio et al., 2015). In practice, NA is likely to be more important for
validating (raw) micro data than for aggregated data. In the latter case missing
values may be forbidden but in that case an explicit validation rule checking for
missing data can be applied.

Often, but not always, the dataset that is used to evaluate a validation rule is
also the data under scrutiny. As an example consider a set (column) of numerical
values x = (x1, x2, . . . , xn). In a structural business survey for example, x may
consist of profit values for different enterprises. The rule

mean(x) ≥ 0

is a check on the whole column. The dataset is considered invalid if the mean
profit is negative. This does not mean that all values are necessarily erroneous, it
just means that this particular combination of profit values cannot be accepted.
So in this case the data used to compute the result is also the data that is
being validated. Now consider a commonly used rule, based on a method of
Hiridoglou and Berthelot (1986), evaluated for each value xj (j = 1, 2, . . . , n):

max

(
xj
x∗

,
x∗

xj

)
≤ h. (1)

Here, x∗ is a reference value, usually median(x), and h is a fixed parameter.
To evaluate this rule x∗ must be computed which implies that the whole of x
must be known. This means that in a formal sense the rule is a validation of x
as a whole. After all, changing any value xi may influence the result for even
when i ̸= j. The aim is of course to evaluate the rule n times, once for each
value xj where the goal is to evaluate the value of xj , not the combination of
values x n times.

For this reason it is proposed that the validation report provides explicit room
to communicate cases where by intention, the validated data is not identical to
the data used in the evaluation of a rule.

Definition 2 (validation). A validation is a tuple (e, d, f, v), where e identifies
the physical validation event, d identifies the data points to which the result per-
tains, f identifies the evaluated validation rule, and v is the generated validation
result.

We leave open the possibility that the components e, f and d consist of informa-
tive tuples to identify subcomponents of the event, data, or rule. In particular,
d will contain information on the data used to evaluate the rule as well as the
data under scrutiny. Note that the above ‘definition’ is not a definition in the
mathematical sense. Rather it is a convention that can be tested in a (soft-
ware) environment where data, rules, and validation events have been labeled
and stored.

Version 1.0.0 August 15, 2017 10



5 AGGREGATION

5 Aggregation

A stocktaking of aggregates desired by users of validation reports yielded a
wide range of wishes2. Commonly reported aggregates include the total number
or fraction of rules violated or the number or fraction of records that violate
a certain rule. Aggregates need not have a numerical value. For example,
in the case of record-wise validation rules, interesting aggregates include ‘the
validation rule that is violated most often by a dataset’ or the ‘record violating
most (record-wise) validation rules’.

Before discussing how we endow machine-readable validation reports with identi-
fiable and combinable aggregates, it is useful to point out some of the subtleties
that arise when thinking of aggregation in a general way. The first subtlety has
to do with counting rules and counting validation results. Consider as an exam-
ple the rules turnover >= 0 and mean(profit) >= 0. When applied to a set
of n business records containing the variables turnover and profit, the first
rule is evaluated n times in n validation events, yielding n validation results.
The second rule is evaluated in a single validation event, yielding a single val-
idation result, regardless of the number of records in the dataset. This means
that an aggregate such as ‘the total number of rules violated’ is ill-defined. It
is only meaningful to talk about ‘the number of events that resulted in False’.

The second subtlety is that a set of aggregates can again be combined to form
new aggregates. For example, in a first step we may compute the fraction of
events yielding False per economic sector. In a next step we count for how
many sectors this number is less than or equal to 0.05.

Figure 4 illustrates the above points in a graph-like structure. Suppose we start
with a basic report containing five validation results. We can add an aggregate
counting the number of passes in a certain subset (Figure 4a). In Figure 4b, a
second count is added, as well as an overall count that is composed of the two
low-level aggregates. Figure 4c depicts a situation where a subset of validation
results is combined to form aggregates of several types: the number of passes
and the fraction of passes.

These examples suggest that aggregates can be interpreted as nodes in a directed
graph where the edges (arrows) point from the aggregate to the nodes used
to compute the contents of the node. Nodes that have no outgoing edges
(leaves) correspond one-to-one with validation results. The collection of nodes
and edges contains sufficient structure to make the representation of validation
reports identifiable, combinable, and (recursively) aggregable. In the following

2Inventories were taken at the ESSnet Validat Integration meeting in Örebro Sweden (14-
16 February 2017) and during the Task Force on Validation meeting in Luxembourg (27 April
2017). Minutes of both meetings are available via CROS-portal .

Version 1.0.0 August 15, 2017 11

https://ec.europa.eu/eurostat/cros


5 AGGREGATION

1 0 1 1 0

2

(a) Validation report with a single aggregated value.

1 0 1 1 0

2

1

3

(b) Validation report with multiple aggregates.

1 0 1 1 0

2

1

3

2/3

(c) Validation report with aggregates of various types.

Figure 4: Structure of validation reports including aggregates, of varying com-
plexity.

paragraph we define more closely the type of graph that can be used to represent
an aggregation structure.

5.1 Aggregation graphs

Graphs are well-known mathematical structures that represent connectivity be-
tween objects. Indeed, the study of graphs dates back to the 18th century when
Leonhard Euler (1741) solved the famous Köningsberger bridges problem. For
our purposes, a graph will serve as a model to store validation results, aggregates

Version 1.0.0 August 15, 2017 12



5 AGGREGATION

thereof, and the operations that lead to the aggregated values.

The need for a graph structure rather then a more simple record-like structure
arises from the demand that reports be combinable to a new report. To see this,
consider the following example. Two institutes validate a dataset with turnover
values against the rule turnover >= 0. The first institute reports the fraction
of passes, while the second institute reports the results for each individual record.
If these reports were naively combined, one could misinterpret the fractional
value reported by the first institute as relating to the separate values reported
by the second institute. A second example occurs when the first institute creates
a report containing both the individual results and the aggregated fraction of
passes. If this report is to be augmented with new information, for example
when new records come in it should be clear from the report that the reported
fraction of passes does not concern the records added later.

Graphs basically consist of elements of some set, called nodes or vertices and
connections between them, which are called edges or arrows if they are directed.
Structured information can be stored by endowing the nodes and edges with
parcels of data. Depending on the type and number of edges allowed between
the nodes, graphs are classified in a broad number of types. Below we define
simple directed graph that comes close to our purpose of structuring validation
aggregates.

Definition 3. A simple finite directed graph is a pair (V,E) where V is a finite
set and E is a set of pairs (v1, v2) with v1, v2 ∈ V and v1 ̸= v2.

The term directed means that edges have a direction: the edge (v1, v2) can
be thought of as an arrow, pointing from v1 to v2 and therefore differs from
(v2,v1). The first element of an edge is referred to as the start and the second
element is referred to as the end of the edge. In a simple directed graph there
are no loops (edges whose start and end are the same) and there are maximally
two opposite-pointing edges that connect two nodes.

A validation report can be represented by a more special graph. To define it,
we first need the concept of a paths and cycles.

Definition 4 (path, cycle). A path is a sequence of edges edges e1, e2, . . . , en
such that the end of ej is equal to the start of ej+1 for j = 1, 2, . . . , n− 1. A
cycle is a path such that the end of en is equal to the start of e1.

A path is thus a sequence of connected edges. Since aggregation works bottom-
up and not top-down, we define the following graph to represent an extended
validation report.

Definition 5. A directed acyclic graph is a simple finite directed graph (V,E)
with the condition that E contains no cycles.

Version 1.0.0 August 15, 2017 13



5 AGGREGATION

The term ‘directed acyclic graph’ is often shortened to DAG in literature. This
particular structure has many technical applications, For example, the DAG
stands model for data processing flow in the SPARK model for distributed com-
puting (Gupta et al., 2003).

Simple graphs have a natural rule of composition. The ‘sum’ of two simple
(directed) graphs is obtained as the union of the two vertex sets and the union
of the two edge sets. For a DAG, this combination rule does not always apply
since such a combination could in principle introduce cycles. (As an example,
combine the DAGs (a, b, (a, b)) and (a, b, (b, a)), the result is no longer a DAG).
We therefore define the following compatibility rule for directed acyclic graphs.

Definition 6 (Compatible DAGs). Given two DAGs G = (V,E) and F =
(V ′, E′). These graphs are called compatible when the combination

(V ∪ V ′, E ∪ E′),

is also a DAG.

A practical consequence of the condition in this definition is that software that
combines extended validation reports (validation reports including aggregations,
to be defined below) should always check for compatibility of the reports upon
combination.

One case of compatible graphs occurs when both G and F are edgeless. Two
reports that do not contain any aggregates satisfy this condition. Ifa F and G
have no nodes or edges in common, they are also compatible.

5.2 Identifying aggregates

Just like validation results, aggregation results are created by evaluating an
expression. Also, just like for validation results, the interpretation of to what
dataset an aggregate relates need not coincide with the data used to compute
the result. Consider a set of validation results v = (v1, v2, . . . , vk, vk+1, vk+2, . . . , vn).
Here, v1 . . . vk relates to one subset of the data under scrutiny, for example a
certain economic sector, and vk+1, . . . , vn relates to another subset. The ag-
gregate

a = k −
k∑

j=1

vj ,

counts the number of violations in the first subset. In this case, the aggregate
communicates a fact about the set used in the calculation. Now consider

a′ =
a

n−
∑n

j=1 vj
.

Version 1.0.0 August 15, 2017 14



6 VALIDATION REPORTS

This aggregate is the fraction of all failures that occur in the first subset. Al-
though every validation result is used to compute it, such aggregates are usually
reported in a table with one column stating the subset (e.g. the economic sec-
tor) and one column stating the aggregate value.

For this reason it is proposed that the validation report provides explicit room
to communicate cases where by intention, the value set to which an aggregate
pertains are not identical to the values used in evaluation of a rule.

Definition 7 (aggregation). An aggregation is a tuple (e, d, f, a) where e iden-
tifies the aggregating event, d the data related to the aggregation, f the aggre-
gating expression, and v the aggregate value.

We leave open the possibility that the elements e, d and f are again tuples.
In particular, d may identify both the data used while evaluating a rule and
the data that is the subject of validation. Observe also that the data element
(d) fixes the edges of the aggregation graph. Like Definition 2, this is not a
definition in a precise mathematical sense. Rather it is something that can be
tested in a particular practical software/data environment.

6 Validation reports

Recall that a validation is a tuple (e, d, f, v) and an aggregation is a tuple
(e, d, f, a). Here (v ∈ {0, 1, NA}) is a validatin result and a is an aggregate
value. In both cases, e refers to the event that where the expression f was
evaluated to create the result (v, or a) and d refers to the data evolved in
evaluating the expression as well as the data related to the interpretation of the
result.

The tuples are constructed to make the values a and v identifiable (Demand 1).
The following recursive construction defines validation reports that are combin-
able (Demand 2) and aggregable (Demand 3).

Definition 8 (Validation report).

1. The empty set {} is a validation report.

2. If (e, r, d, v) is a validation then {(e, d, r, v)} is a validation report.

Note that {(e, d, r, v)} is a trivial DAG, with a single node and no edges.

3. If V and W are combinable in the sense of Definition 6, then V ∪W is
also a validation report.

Version 1.0.0 August 15, 2017 15



6 VALIDATION REPORTS

4. If V is a validation report, f is an expression, and S is a subset of V such
that f can be evaluated with S. Then

V ∪ {(efS , dfS , f, f(S))},

is also a validation report. Here, efS identifies the event that created
the aggregate f(S) and dfS identifies S and the data to which the result
f(S) pertains.

The first step is a formality, allowing for the edge case of empty reports. By
applying the second and third step repeatedly, a report can be populated with
identifiable validation results (validations). Observe that as long as we are only
adding validations, the validation reports are trivially combinable since it can
be interpreted as an edgeless graph (see under definition 6). In step four, an
identifiable aggregate (aggregation) is constructed that is compatible with the
validation report to which it is added. Remember that an aggregation object
also stores the edges to the nodes that were used to construct it so this definition
indeed constructs a directed acyclic graph.

Now that we have a conceptual definition of a validation report, that satisfies
all three demands, we can move forward and define the identifying pieces of
information to be stored in the validations and aggregations on a logical level.

6.1 Logical validation report structure

In the following subsections the information that needs to be stored in validation
or aggregation tuples is described explicitly. The descriptions are formatted in
a set of tables, each with the following structure.

1. Item: the name of the information item.

2. Format: logical format of the data in the item. Allowed formats are:
string, numeric, enum (with categories defined in the description col-
umn), datetime and -. The latter indicates that the format is free,
including the possibility to include user-defined objects. A type may be
followed by brackets [] to indicate an array.

3. Description: a short description of the item. More detailed descriptions
might follow after the table.

4. Example: an example.

We distinguish between information which is mandatory and information that is
recommended. This is indicated in the caption of each table. Some information

Version 1.0.0 August 15, 2017 16



6 VALIDATION REPORTS

items may be extended with user-defined information. Whether this is the case
is indicated at the top of each table.

6.1.1 Identification of an expression evaluation event.

Both validation results and aggregates are created by an event e that evaluates
an expression.

Table 2: Mandatory identification of a expression evaluation event e . Fields
marked with a † are for validation results only. The number of fields is extend-
able.

Item Format Description Example
time datetime Time marking the com-

pletion of a validation
event.

20170212

10:15:30+0100

actor string Software that or person
who created the result.

R package validate

version 0.1.7

The ‘Business Architecture for ESS Validation’ (ESS, 2017) defines a service-
oriented infrastructure for data validation. In the cases where a client-server
model is applied (the server executing validation and sending reports), the fol-
lowing extra information is recommended.

Table 3: Recommended information on a physical validation event e. Fields
marked with a † are for validation results only. The number of fields is extend-
able.

Item Format Description Example
agent - Actor (person, institute,

dpt, . . .) responsible for
executing the validation
event

dpt. of data validation,
Eurostat

trigger - Actor (person, institute,
dpt, . . .) responsible for
triggering the event

John Statistician, Statis-
tics Netherlands

Version 1.0.0 August 15, 2017 17



6 VALIDATION REPORTS

6.1.2 Identification of an expression

Table 4: Mandatory identification of an expression f . Fields marked with a †

are for validation results only. The number of fields is extendable.

Item Format Description Example
language string Language and version in

which a expression is
written

R/validate version 0.1.7

expression string Expression defining the
rule or aggregate.

age >= 0

severity† enum ‘error’, ‘warning’, or
‘information’

‘error’

The business architecture for ESS validation also allows for certain up- or down-
grades of the severity status for individual cases. Furthermore, it is good practice
to explain the purpose of complicated expressions in a human-readable descrip-
tion.

Table 5: Recommended values for identification of a validation rule. Fields
marked with a † are for validation results only. The number of fields is extend-
able.

Item Format Description Example
description string human-readable descrip-

tion of the rule.
Nonnegativity for age.

change† enum ‘up’, ‘down’ ‘down’

explanation† string Explanation for change Nationalization of a large
bank.

Of course the ‘status’ field can also be used to add an explanation on why a
status was changed.

6.1.3 Identification of data

The validation report identifies two data sets for each reported validation result
or aggregate: the set of datapoints that was involved in evaluating the expression
and the set of datapoints related to the interpretation of the result. The dataset
that is used to evaluate an expression will be referred to as the source data while
the dataset that is related to the interpretation of the result will be referred to
as the target data. In many cases these will coincide but see Equation 1 on
Page 10 for a counterexample. There, the source is the whole column of data
(denoted x) while the target is a single value of the column (denoted xj).

Version 1.0.0 August 15, 2017 18



6 VALIDATION REPORTS

Table 6: Mandatory identification of validated data.. Fields marked with a †

are for validation results only. The number of fields is extendable.

Item Format Description Example
source string[] A key or set of keys

identifying the data used
in evaluating the expres-
sion.

{(‘Dutch inhabitants’,
‘EU-SILC2016, ‘Richard
Respondent’, ‘Income’)}

target string[] A key or set of keys iden-
tifying the data targeted
by the expression.

{(‘Dutch inhabitants’,
‘EU-SILC2016, ‘Richard
Respondent’, ‘Income’)}

Convention: if the ‘target’ field is empty, it is assumed equal to ‘source’.

Since a set of keys that identify a dataset is hard to interpret by humans, we
add the following recommendation.

Table 7: Recommended values for identification of validated data.

Item Format Description Example
description string human-readable descrip-

tion of the data.
Income of a single citi-
zen.

Below, we sketch two possible ways on how the data identification could be
implemented.

1. Full specification of data. The methodology handbook on validation
prescribes a generic model to identify a single datapoint (Di Zio et al., 2015,
Chapter 5). In short, one identifies the value of a data point by fixing

• the population U ;

• the event τ that lead to its observation;

• the population unit u from which a property was observed, and

• the attribute X that was measured.

Here, the term ‘population’ should be interpreted rather generally. It may be
the human population of a country or region, but it can also be a population of
companies, countries, events, emails, and so on. Similarly, the event that lead
to an observation can be the receiving of transmitted data from an institute, or
it may be a data collection event based on a survey. In the handbook, a data
point is defined as a value (from some domain) paired with a tuple (U, τ, u,X)
that identifies it.

Version 1.0.0 August 15, 2017 19



6 VALIDATION REPORTS

When the set of keys consists of a set of (U, τ, u,X)-tuples as defined in the
methodological handbook on validation, the report will identify data involved
in validation completely free of any context involving the sender, the process,
institutes involved and so on.

2. Extra standardization. The key sets can quickly inflate the size of a
validation report. Since the format is left open (we only specify keys to be an
(array of) strings), it is possible to apply a more practical format at the price of
extra standardizing agreements between sender and receiver of the report. Let
us illustrate this by sketching a validation procedure in a service-client based
infrastructure. We call the client ‘Alice’ and the server ‘Bob’.

1. Alice sends data, consisting of n records and a validation rule to ‘Bob’.
She also sends a unique string s (for example a hash key) that she has
connected with this particular dataset in her administration. The rule she
sends is such that it must be evaluated on every record.

2. Upon receiving Alice’s message, Bob evaluates the rule on each of the n
records. He sets each source field equal to the string s.k, where k is the
key that uniquely identifies the record under scrutiny. The target fields
are left empty.

3. Bob completes the validation report and sends it to Alice.

The trade-off in the above procedure is that the validation report can only be
understood by the sender and receiver, but not by a third party who is unaware
of the meaning of the identifying keys s and k.

6.1.4 Result values

Table 8: Mandatory format for the validation result v or aggregation result a.
Fields marked with a † are for validation results only. The number of fields is
not extendable.

Item Format Description Example
value† enum 1, 0, or NA 1
value string evaluation result "7"

Version 1.0.0 August 15, 2017 20



7 TECHNICAL STANDARDS

7 Technical standards

In this section we define explicitly the technical data exchange format for the
logical structures defined in the previous subsections.

7.1 Object model

The validation report structure consists of records that are either of type vali-
dation, or aggregation. The former are schematically represented as follows

validation := ⟨id, type = "validation", event, rule, data, value⟩
event := ⟨time, actor, agent, trigger⟩
rule := ⟨language, expression, severity, status, decription⟩
data := ⟨source, target, description⟩,

where ‘id’ is a unique identifier, ‘type’ has a fixed value that labels the object
type and ‘value’ is a validation result (0, 1 or NA). In the above scheme, the
fields in italics are optional.

Objects of type type ‘aggregation’ are schematically described as

aggregation := ⟨id, type = "aggregation", event, aggregate, data, value⟩
event := ⟨time, actor⟩

aggregate := ⟨language, expression, description⟩
data := ⟨source, target, description⟩,

where ‘value’ is the aggregate value, represented as a string.

The above description serves as a quick reference data structure, independent
of the implementation language. It encompasses Definitions 1, 2 and 7, with
components derived from the logical descriptions in §6.1.

7.2 Implementation

Below we propose a technical format for exchanging data validation reports.
There are several common standards allowing for implementation of structured
data exchange, including textual formats such as XML (W3C consortium, 2013),
YAML (Ben-Kiki et al., 2009), JSON (ECMA, 2013) and popular binary formats
such as protobuf (Google, 2017). In principle, any of these formats can be
used to serialize the validation and aggregation data structures that were in
the previous subsection. Here, we use the JSON format because of simplicity,

Version 1.0.0 August 15, 2017 21



7 TECHNICAL STANDARDS

2010 2011 2012 2013 2014 2015 2016 2017

0

20

40

60

80

100

Year

P
er

ce
nt

ag
e

UTF−8
ISO−8859−1
Windows−1251
Shift−JIS

Figure 5: Percentages of encoding standards used on the web (W3techs, 2017).

wide support in many languages, and the availability of a schema definition
language (Galiegue et al., 2013). Moreover, JSON strings parse straight into
javascript objects, facilitating further processing and visualisation, for example
in the popular d3.js framework (Bostock et al., 2011). This implementation
can be used as a reference and it is left to the user to implement the concepts
in another language if so desired.

Although it is a textual format, the JSON standard does not impose restrictions
on the encoding used. It is left explicitly to standards built upon JSON to define
an encoding (ECMA, 2013, pp ii). In this standard we follow the currently most
widely applied standard (see Figure 5) with the following demand.

Table 9: File encoding used for validation reports

Validation reports are encoded in UTF-8.

The different data types within a file are to be formatted according to commonly
used standards where possible. In particular, data in validation reports are
encoded as stated in Table 10.

Table 10: Format of data types in validation reports.

Version 1.0.0 August 15, 2017 22



7 TECHNICAL STANDARDS

1 Numbers are encoded in a valid decimal ISO/IEC/IEEE 60559:2011 (IEEE
754) format (IEEE, 2008).

2 Date-time data shall be denoted in basic ISO 8601 format
YYYYMMDDThhmmss±hhmm (ISO, 2004).

The JSON scheme defining is shown in Listing 1. The full code can also be
found at github:

https://github.com/data-cleaning/ValidatReport

Version 1.0.0 August 15, 2017 23

https://github.com/data-cleaning/ValidatReport


7 TECHNICAL STANDARDS

Listing 1: JSON schema for a validation report.

1 {
2 ” t i t l e ” : ” v a l i d a t i o n r e p o r t 1 . 0 . 0 ” ,
3 ” i d ” : ” h t t p s : // goo . g l /PhHurj ” ,
4 ”$schema” : ” h t tp : // j son−schema . org / d r a f t −04/schema#” ,
5 ” type ” : ” a r r a y ” ,
6 ” i t ems ” : {
7 ”oneOf” : [
8 {” $ r e f ” : ”#/d e f i n i t i o n s / v a l i d a t i o n ” } ,
9 {” $ r e f ” : ”#/d e f i n i t i o n s / agg r e g a t i o n ”}
10 ]
11 } ,
12 ” d e f i n i t i o n s ” : {
13 ” v a l i d a t i o n ” : {
14 ” type ” : ” o b j e c t ” ,
15 ” p r o p e r t i e s ” : {
16 ” i d ” : { ” type ” : ” s t r i n g ” } ,
17 ” type ” : { ”enum” : [ ” v a l i d a t i o n ” ] } ,
18 ” even t ” : { ” $ r e f ” : ”#/d e f i n i t i o n s / even t ” } ,
19 ” r u l e ” : { ” $ r e f ” : ”#/d e f i n i t i o n s / r u l e ” } ,
20 ” data ” : { ” $ r e f ” : ”#/d e f i n i t i o n s / data ” } ,
21 ” v a l u e ” : { ”enum” : [ ”0” , ”1” , ”NA” ] }
22 }
23 } ,
24 ” agg r e g a t i o n ” : {
25 ” type ” : ” o b j e c t ” ,
26 ” p r o p e r t i e s ” : {
27 ” i d ” : { ” type ” : ” s t r i n g ” } ,
28 ” type ” : { ”enum” : [ ” a gg r e g a t i o n ” ] } ,
29 ” even t ” : { ” $ r e f ” : ”#/d e f i n i t i o n s / even t ” } ,
30 ” agg r ega t e ” : { ” $ r e f ” : ”#/d e f i n i t i o n s / agg r ega t e ” } ,
31 ” data ” : { ” $ r e f ” : ”#/d e f i n i t i o n s / data ” } ,
32 ” v a l u e ” : { ” type ” : ” s t r i n g ” }
33 }
34 } ,
35 ” even t ” : {
36 ” type ” : ” o b j e c t ” ,
37 ” p r o p e r t i e s ” : {
38 ” t ime ” : { ” type ” : ” s t r i n g ” } ,
39 ” a c t o r ” : { ” type ” : ” s t r i n g ” } ,
40 ” agent ” : {} ,
41 ” t r i g g e r ” : {}
42 } ,

Version 1.0.0 August 15, 2017 24



7 TECHNICAL STANDARDS

43 ” r e q u i r e d ” : [ ” t ime ” , ” a c t o r ” ]
44 } ,
45 ” r u l e ” : {
46 ” type ” : ” o b j e c t ” ,
47 ” p r o p e r t i e s ” : {
48 ” language ” : { ” type ” : ” s t r i n g ” } ,
49 ” e x p r e s s i o n ” : { ” type ” : ” s t r i n g ” } ,
50 ” s e v e r i t y ” : { ”enum” :
51 [ ” i n f o rma t i o n ” , ”warn ing ” , ” e r r o r ” ] } ,
52 ” d e s c r i p t i o n ” : { ” type ” : ” s t r i n g ” } ,
53 ” change ” : { ”enum” : [ ”up” , ”down” ] } ,
54 ” e x p l a n a t i o n ” : { ” type ” : ” s t r i n g ” }
55 } ,
56 ” r e q u i r e d ” : [ ” l anguage ” , ” e x p r e s s i o n ” , ” s e v e r i t y ” ]
57 } ,
58 ” agg r ega t e ” : {
59 ” type ” : ” o b j e c t ” ,
60 ” p r o p e r t i e s ” : {
61 ” language ” : { ” type ” : ” s t r i n g ” } ,
62 ” e x p r e s s i o n ” : { ” type ” : ” s t r i n g ” } ,
63 ” d e s c r i p t i o n ” : { ” type ” : ” s t r i n g ” }
64 } ,
65 ” r e q u i r e d ” : [ ” l anguage ” , ” e x p r e s s i o n ” ]
66 } ,
67 ” data ” : {
68 ” type ” : ” o b j e c t ” ,
69 ” p r o p e r t i e s ” : {
70 ” sou r c e ” : {
71 ” type ” : ” a r r a y ” ,
72 ” i t ems ” : {” type ” : ” s t r i n g ”}
73 } ,
74 ” t a r g e t ” : {
75 ” type ” : ” a r r a y ” ,
76 ” i t ems ” : {” type ” : ” s t r i n g ”}
77 } ,
78 ” d e s c r i p t i o n ” : { ” type ” : ” s t r i n g ”}
79 } ,
80 ” r e q u i r e d ” : [ ” s ou r c e ” , ” t a r g e t ” ]
81 }
82 }
83 }

Version 1.0.0 August 15, 2017 25



8 EXAMPLES

8 Examples

In this Section we work out a few examples based on validation reports that are
currently implemented in several statistical institutes. We are grateful to the
organisations that provided the examples to the ESSnet project.

Listing 2: Part of an extended report based on an example from the Swedish
Triton system.

1 [
2 {
3 ” i d ” : ”agg1” ,
4 ” type ” : ” agg r e g a t i o n ” ,
5 ” even t ” : {
6 ” t ime ” : ”20150930T104052+0200” ,
7 ” a c t o r ” : ” T r i t on demo 2” ,
8 ” agent ” : n u l l ,
9 ” t r i g g e r ” : n u l l
10 } ,
11 ” agg r ega t e ” : {
12 ” language ” : ”VBA” ,
13 ” e x p r e s s i o n ” : ”COUNT” ,
14 ” s e v e r i t y ” : ” i n f o rma t i o n ” ,
15 ” d e s c r i p t i o n ” : ” To t a l t a n t a l f e l ” ,
16 ” s t a t u s ” : ””
17 } ,
18 ” data ” : {
19 ” sou r c e ” : n u l l ,
20 ” t a r g e t ” : n u l l ,
21 ” d e s c r i p t i o n ” : ””
22 } ,
23 ” v a l u e ” : ”17”
24 } ,
25 {
26 ” i d ” : ”A 22” ,
27 ” type ” : ” v a l i d a t i o n ” ,
28 ” even t ” : {
29 ” t ime ” : ”20150930T104041+0200” ,
30 ” a c t o r ” : ” T r i t on demo 2” ,
31 ” agent ” : n u l l ,
32 ” t r i g g e r ” : n u l l
33 } ,
34 ” r u l e ” : {
35 ” language ” : ”VBA” ,

Version 1.0.0 August 15, 2017 26



8 EXAMPLES

36 ” e x p r e s s i o n ” : ”Om(B1 ; PersonNr10 ; 0 ;
37 T. Sub s t r i n g (KO; 9 ; 0 ;N, KO; 1 ; 0 ;N) ) >= (KO; 0 ;T) ” ,
38 ” s e v e r i t y ” : ” e r r o r ” ,
39 ” d e s c r i p t i o n ” :
40 ”A 22 Personnummer maste anges med 10 tekken . ” ,
41 ” s t a t u s ” : ””
42 } ,
43 ” data ” : {
44 ” sou r c e ” : ” [ ” i n v a r n a i S v e r i g e ” ,
45 ” unde r s kn i ng ” ,
46 ”5510112641” ,
47 ”PersonNr10 ” ] ” ,
48 ” t a r g e t ” : n u l l ,
49 ” d e s c r i p t i o n ” : ””
50 } ,
51 ” v a l u e ” : ”0”
52 }
53 . . . o t h e r e v a l u a t i o n r e s u l t s . . .
54 ]

Version 1.0.0 August 15, 2017 27



8 EXAMPLES

Listing 3: Part of an extended report based on the assessment of VTL 1.1 -
Questionnaire for NAPS statistics (January 2017).

1 [
2 {
3 ” i d ” : ” aggr ” ,
4 ” type ” : ” agg r e g a t i o n ” ,
5 ” even t ” : {
6 ” t ime ” : ”” ,
7 ” a c t o r ” : ”” ,
8 ” agent ” : n u l l ,
9 ” t r i g g e r ” : n u l l
10 } ,
11 ” e x p r e s s i o n ” : {
12 ” language ” : ”VTL 1 .1 ” ,
13 ” agg r ega t e ” : ”COUNT” ,
14 ” d e s c r i p t i o n ” : ” Tota l nr o f r e v i s i o n s above t h r e s h o l d ” ,
15 } ,
16 ” data ” : {
17 ” sou r c e ” : [ ”WC001” , ”WC002” , ”WC003” , ”WC004” ] ,
18 ” t a r g e t ” : n u l l ,
19 ” d e s c r i p t i o n ” : ”EU member s t a t e s ”
20 } ,
21 ” v a l u e ” : ”4”
22 } ,
23 {
24 ” i d ” : ”WC001” ,
25 ” type ” : ” v a l i d a t i o n ” ,
26 ” even t ” : {
27 ” t ime ” : ”20150930T104041+0200” ,
28 ” a c t o r ” : ” Laura V igno l a ” ,
29 ” agent ” : n u l l ,
30 ” t r i g g e r ” : n u l l
31 } ,
32 ” r u l e ” : {
33 ” language ” : ”VTL 1 .1 ” ,
34 ” e x p r e s s i o n ” : ”
35 d s e s a c u r r e n t f i l t =
36 d s e s a c u r r e n t [
37 f i l t e r (PRICE = ’V ’ and PRICE = ’Y ’ ) ] ;
38
39 d s e s a p r e v i o u s f i l t =
40 d s e s a p r e v i o u s [
41 f i l t e r (PRICE = ’V ’ and PRICE = ’Y ’ ) ] ;

Version 1.0.0 August 15, 2017 28



8 EXAMPLES

42
43 d s e s a c u r r e n t p c e n t =
44 d s e s a c u r r e n t f i l t [ STO = ’P3 ’ ] /
45 d s e s a c u r r e n t f i l t [ STO = ’B1GQ ’ ] ;
46
47 d s e s a p r e v i o u s p c e n t =
48 d s e s a p r e v i o u s f i l t [ STO = ’P3 ’ ] /
49 d s e s a p r e v i o u s f i l t [ STO = ’B1GQ ’ ] ;
50
51 d s r e s u l t 5 := check ( abs (
52 d s e s a c u r r e n t p c e n t . o b s v a l u e −
53 d s e s a p r e v i o u s p c e n t . o b s v a l u e ) ) <= 0.015 ,
54 e r r o r c o d e ( ’ De v i a t i o n l a r g e r than 1.5% between
55 r e v i s e d f i g u r e s and p r e v i o u s v e r s i o n f o r
56 the r a t i o f i n a l consumpt ion e x p e nd i t u r e / GDP
57 at market p r i c e ’ ) ,
58 e r r o r l e v e l ( ’ E r r o r ’ ) ) ; ” ,
59 ” s e v e r i t y ” : ” e r r o r ” ,
60 ” d e s c r i p t i o n ” : ”
61 For c u r r e n t p r i c e s (PRICE=’V ’ ) and p r e v i o u s y ea r
62 p r i c e s (PRICE=’Y ’ ) , the d i f f e r e n c e between
63 − r e v i s e d f i g u r e s o f f i n a l consumpt ion e x p e nd i t u r e
64 (STO=’P3 ’ ) as a % GDP at market p r i c e
65 (STO: ’B1GQ ’ )
66 − and the same r a t i o f o r the p r e v i o u s
67 t r a n sm i s s i o n shou l d not be h i g h e r than 1.5%
68 => d e v i a t i o n o f 1.5% maximum accep ted f o r the r a t i o
69 ( f i n a l consumpt ion e x p e nd i t u r e /
70 GDP at market p r i c e ) i n the r e v i s e d f i g u r e s . ” ,
71 ” s t a t u s ” : ””
72 } ,
73 ” data ” : {
74 ” sou r c e ” : [
75 [ ” p r i c e s ” , ”2014Q1− f i r s t ” , ”AT” ,
76 ” f i n a l consumpt ion e x p e nd i t u r e ”
77 ] ,
78 [ ” p r i c e s ” , ”2014Q1−r e v i s e d ” , ”AT” ,
79 ” f i n a l consumpt ion e x p e nd i t u r e ”
80 ]
81 ] ,
82 ” t a r g e t ” : n u l l ,
83 ” d e s c r i p t i o n ” : ””
84 } ,
85 ” v a l u e ” : ”0”

Version 1.0.0 August 15, 2017 29



8 EXAMPLES

86 }
87 . . . the o th e r e v a l u a t i o n r e s u l t s . . .
88 ]

Version 1.0.0 August 15, 2017 30



8 EXAMPLES

Acknowledgements

The authors are grateful to Tjalling Gelsema, Edwin de Jonge, Dick Wind-
meijer, and the partners of the ESSnet Validat Integration for comments and
suggestions.

Version 1.0.0 August 15, 2017 31



REFERENCES

References

Ben-Kiki, O., C. Evans, and I. döt Net (2001–2009). YAML Specification Index.
website.

Bostock, M., V. Ogievetsky, and J. Heer (2011). D3: Data-driven documents.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis). website.

Di Zio, M., N. Fursova, T. Gelsema, S. Gießing, U. Guarnera, J. Ptrauskienė,
L. Quensel-von Kalben, M. Scanu, K. ten Bosch, M. van der Loo, and
K. Walsdorfe (2015). Methodology for data validation. Technical Report
Deliverable No. 11/2, ESSNet on validation. pdf.

ECMA (2013). The JSON data interchange format. Technical Report ECMA-
404, ECMA International. pdf.

ESS (2017). Business architecture for ESS validation. Technical report, Euro-
pean Statistical System. pdf.

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Com-
mentarii academiae scientiarum Petropolitanae 8, 128–140. pdf.

Galiegue, F., K. Zyp, et al. (2013). Json schema: Core definitions and termi-
nology. Internet Engineering Task Force (IETF), 32. json-schema.org.

Google (2008–2017). Protocol buffers. website.

Gupta, S., N. Dutt, R. Gupta, and A. Nicolau (2003). Spark: A high-level
synthesis framework for applying parallelizing compiler transformations. In
VLSI Design, 2003. Proceedings. 16th International Conference on, pp. 461–
466. IEEE. pdf.

Hiridoglou, M. and J.-M. Berthelot (1986). Statistical editing and imputation
for periodic business surveys. Survey methodology 12(1), 73–83.

IEEE (2008). Standard for floating point arithmethic. IEEE Std. 754-2008, pdf.

ISO (2004). Data elements and interchange formats–information interchange–
representation of dates and times. ISO/TC154 . pdf.

W3C consortium (2008–2013). XML. website.

W3techs (2017). Historical yearly trends in the usage of character encodings
for websites. website, last referenced May 12, 2017.

Version 1.0.0 August 15, 2017 32

http://yaml.org/spec/
http://vis.stanford.edu/papers/d3
https://ec.europa.eu/eurostat/cros/system/files/methodology_for_data_validation_v1.0_rev-2016-06_final.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://ec.europa.eu/eurostat/cros/system/files/business_architecture_for_ess_validation_-_final.pdf
http://eulerarchive.maa.org//docs/originals/E053.pdf
http://json-schema.org/
https://developers.google.com/protocol-buffers/
http://mesl.ucsd.edu/site/pubs/Spark-System-Vlsi03.pdf
https://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf
http://dotat.at/tmp/ISO_8601-2004_E.pdf
https://w3c.org/TR/REC-xml
https://w3techs.com/technologies/history_overview/character_encoding/ms/y

	Introduction
	Requirements for a validation report
	Evaluation events
	Identifying validation results
	Aggregation
	Aggregation graphs
	Identifying aggregates

	Validation reports
	Logical validation report structure
	Identification of an expression evaluation event.
	Identification of an expression
	Identification of data
	Result values


	Technical standards
	Object model
	Implementation

	Examples
	Acknowledgements
	References

